Integrate EmonLib (energy monitor) library to ESP
Posted: Sun May 17, 2015 6:28 pm
Hi all. I started to integrate this library on ESP:
https://github.com/openenergymonitor/EmonLib
Im using this example:
https://github.com/openenergymonitor/EmonLib/blob/master/examples/current_only/current_only.ino
And just 2 functions need to be adapted:
I'll work on it, but any help is really appreciated
This is one important step to make our project better, I collaborate on a opensource framework called Souliss, and on the last update we've the framework working over an ESP using your awesome work with the ARDUINO IDE-ESP.
Thanks in advance.
Regards
https://github.com/openenergymonitor/EmonLib
Im using this example:
https://github.com/openenergymonitor/EmonLib/blob/master/examples/current_only/current_only.ino
And just 2 functions need to be adapted:
Code: Select all
double EnergyMonitor::calcIrms(unsigned int Number_of_Samples)
{
#if defined emonTxV3
int SupplyVoltage=3300;
#else
int SupplyVoltage = readVcc();
#endif
for (unsigned int n = 0; n < Number_of_Samples; n++)
{
sampleI = analogRead(inPinI);
// Digital low pass filter extracts the 2.5 V or 1.65 V dc offset,
// then subtract this - signal is now centered on 0 counts.
offsetI = (offsetI + (sampleI-offsetI)/1024);
filteredI = sampleI - offsetI;
// Root-mean-square method current
// 1) square current values
sqI = filteredI * filteredI;
// 2) sum
sumI += sqI;
}
double I_RATIO = ICAL *((SupplyVoltage/1000.0) / (ADC_COUNTS));
Irms = I_RATIO * sqrt(sumI / Number_of_Samples);
//Reset accumulators
sumI = 0;
//--------------------------------------------------------------------------------------
return Irms;
}
long EnergyMonitor::readVcc() {
long result;
//not used on emonTx V3 - as Vcc is always 3.3V - eliminates bandgap error and need for calibration http://harizanov.com/2013/09/thoughts-on-avr-adc-accuracy/
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328__) || defined (__AVR_ATmega328P__)
ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#elif defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_AT90USB1286__)
ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
ADCSRB &= ~_BV(MUX5); // Without this the function always returns -1 on the ATmega2560 http://openenergymonitor.org/emon/node/2253#comment-11432
#elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
ADMUX = _BV(MUX5) | _BV(MUX0);
#elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
ADMUX = _BV(MUX3) | _BV(MUX2);
#endif
#if defined(__AVR__)
delay(2); // Wait for Vref to settle
ADCSRA |= _BV(ADSC); // Convert
while (bit_is_set(ADCSRA,ADSC));
result = ADCL;
result |= ADCH<<8;
result = READVCC_CALIBRATION_CONST / result; //1100mV*1024 ADC steps http://openenergymonitor.org/emon/node/1186
return result;
#elif defined(__arm__)
return (3300); //Arduino Due
#else
return (3300); //Guess that other un-supported architectures will be running a 3.3V!
#endif
}
I'll work on it, but any help is really appreciated
This is one important step to make our project better, I collaborate on a opensource framework called Souliss, and on the last update we've the framework working over an ESP using your awesome work with the ARDUINO IDE-ESP.
Thanks in advance.
Regards